Skip to content

With Embeddings

PAM embeddings are stored in a separate companion file. This keeps the core memory store lightweight while supporting systems that need vector search. This example provides embeddings for all 5 memories in the Complete Memory Store.

{
"schema": "portable-ai-memory-embeddings",
"schema_version": "1.0",
"embeddings": [
{
"id": "emb-001",
"memory_id": "mem-001-identity",
"model": "example-model-8d",
"dimensions": 8,
"created_at": "2026-02-15T22:01:00Z",
"vector": [
0.0123,
-0.0456,
0.0789,
-0.0234,
0.0567,
-0.0891,
0.0345,
-0.0678
]
},
{
"id": "emb-002",
"memory_id": "mem-002-skill",
"model": "example-model-8d",
"dimensions": 8,
"created_at": "2026-02-15T22:01:00Z",
"vector": [
0.0234,
-0.0567,
0.0891,
-0.0123,
0.0456,
-0.0789,
0.0678,
-0.0345
]
},
{
"id": "emb-003",
"memory_id": "mem-003-project",
"model": "example-model-8d",
"dimensions": 8,
"created_at": "2026-02-15T22:01:00Z",
"vector": [
0.0345,
-0.0678,
0.0123,
-0.0456,
0.0789,
-0.0234,
0.0567,
-0.0891
]
},
{
"id": "emb-004",
"memory_id": "mem-004-preference",
"model": "example-model-8d",
"dimensions": 8,
"created_at": "2026-02-15T22:01:00Z",
"vector": [
0.0456,
-0.0789,
0.0234,
-0.0567,
0.0891,
-0.0123,
0.0345,
-0.0678
]
},
{
"id": "emb-005",
"memory_id": "mem-005-environment",
"model": "example-model-8d",
"dimensions": 8,
"created_at": "2026-02-15T22:01:00Z",
"vector": [
0.0567,
-0.0891,
0.0345,
-0.0678,
0.0123,
-0.0456,
0.0789,
-0.0234
]
}
]
}
  • schema / schema_version — Identifies this as a PAM embeddings file (portable-ai-memory-embeddings, version 1.0)
  • embeddings[].id — Unique embedding identifier (e.g. emb-001), referenced by the embedding_ref field in the corresponding memory object in the memory store
  • embeddings[].memory_id — Links back to the corresponding memory object (e.g. mem-001-identity)
  • embeddings[].model — Embedding model used to generate the vector (example-model-8d in this demo)
  • embeddings[].dimensions — Vector dimensionality, must match the length of the vector array (8 in this demo)
  • embeddings[].vector — The actual embedding vector as an array of floats
  • embeddings[].created_at — When the embedding was generated; useful for detecting stale embeddings after memory content is updated

The embeddings file validates against portable-ai-memory-embeddings.schema.json.