With Embeddings
PAM embeddings are stored in a separate companion file. This keeps the core memory store lightweight while supporting systems that need vector search. This example provides embeddings for all 5 memories in the Complete Memory Store.
Example
Section titled “Example”{ "schema": "portable-ai-memory-embeddings", "schema_version": "1.0", "embeddings": [ { "id": "emb-001", "memory_id": "mem-001-identity", "model": "example-model-8d", "dimensions": 8, "created_at": "2026-02-15T22:01:00Z", "vector": [ 0.0123, -0.0456, 0.0789, -0.0234, 0.0567, -0.0891, 0.0345, -0.0678 ] }, { "id": "emb-002", "memory_id": "mem-002-skill", "model": "example-model-8d", "dimensions": 8, "created_at": "2026-02-15T22:01:00Z", "vector": [ 0.0234, -0.0567, 0.0891, -0.0123, 0.0456, -0.0789, 0.0678, -0.0345 ] }, { "id": "emb-003", "memory_id": "mem-003-project", "model": "example-model-8d", "dimensions": 8, "created_at": "2026-02-15T22:01:00Z", "vector": [ 0.0345, -0.0678, 0.0123, -0.0456, 0.0789, -0.0234, 0.0567, -0.0891 ] }, { "id": "emb-004", "memory_id": "mem-004-preference", "model": "example-model-8d", "dimensions": 8, "created_at": "2026-02-15T22:01:00Z", "vector": [ 0.0456, -0.0789, 0.0234, -0.0567, 0.0891, -0.0123, 0.0345, -0.0678 ] }, { "id": "emb-005", "memory_id": "mem-005-environment", "model": "example-model-8d", "dimensions": 8, "created_at": "2026-02-15T22:01:00Z", "vector": [ 0.0567, -0.0891, 0.0345, -0.0678, 0.0123, -0.0456, 0.0789, -0.0234 ] } ]}Key Fields
Section titled “Key Fields”schema/schema_version— Identifies this as a PAM embeddings file (portable-ai-memory-embeddings, version1.0)embeddings[].id— Unique embedding identifier (e.g.emb-001), referenced by theembedding_reffield in the corresponding memory object in the memory storeembeddings[].memory_id— Links back to the corresponding memory object (e.g.mem-001-identity)embeddings[].model— Embedding model used to generate the vector (example-model-8din this demo)embeddings[].dimensions— Vector dimensionality, must match the length of thevectorarray (8 in this demo)embeddings[].vector— The actual embedding vector as an array of floatsembeddings[].created_at— When the embedding was generated; useful for detecting stale embeddings after memory content is updated
The embeddings file validates against
portable-ai-memory-embeddings.schema.json.